GAUSS JORDAN ELIMINATION

Solve The Given Linear Equations Systems By Using Gauss Jordan Elimination Method

Source code :-

#include <stdio.h> int main() { int i, j, k, n; float a[20][20], x[20], r; printf("Enter the number of equations: "); scanf("%d", &n); // Input the matrix. printf("\nEnter co-efficient matrix [A] row wise:\n");     for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { printf("\na[%d][%d]= ", i + 1, j + 1); scanf("%f", &a[i][j]); } printf("\n"); } printf("\n\nEnter column matrix [B] row wise:\n"); for (i = 0, j = n; i < n; i++) { printf("\nb[%d]= ", i + 1); scanf("%f", &a[i][j]); } printf("\n"); // transform coefficient matrix into normalize form for (k = 0; k < n; k++) { for (i = 0; i < n; i++) { if (i == k) continue; r = a[i][k] / a[k][k]; for (j = 0; j <= n; j++) { a[i][j] = a[i][j] - r * a[k][j]; } } // Steps display start. [optional] printf("\nStep %d:-\n\n", k + 1); for (i = 0; i < n; i++) { printf("|"); for (j = 0; j < n; j++) { printf("%5.2f", a[i][j]); } printf(" |\t| %5.2f |\n", a[i][j]); } printf("\n"); // Steps display stop. } for (i = 0; i < n; i++) { x[i] = a[i][n] / a[i][i]; a[i][i] = a[i][i] / a[i][i]; } printf("\nStep %d:-\n\n", k + 1); for (i = 0; i < n; i++) { printf("|"); for (j = 0; j < n; j++) { printf("%5.2f", a[i][j]); } printf(" |\t| %5.2f |\n", x[i]); } printf("\n"); printf("\nThe solution is:\n"); for (i = 0; i < n; i++) { printf("x[%d]=%5.2f\n", i + 1, x[i]); } return 1; }

Input-Output :-

abhi@hp-15q-laptop:~$ gcc gauss_jordan.c
abhi@hp-15q-laptop:~$ ./a.out

Enter the number of equations: 3

Enter co-efficient matrix [A] row wise:

a[1][1]= 2

a[1][2]= -1

a[1][3]= 3


a[2][1]= 1

a[2][2]= 1

a[2][3]= 1


a[3][1]= 1

a[3][2]= -1

a[3][3]= 1



Enter column matrix [B] row wise:

b[1]= 9

b[2]= 6

b[3]= 2


Step 1:-

| 2.00-1.00 3.00 |      |  9.00 |
| 0.00 1.50-0.50 |      |  1.50 |
| 0.00-0.50-0.50 |      | -2.50 |


Step 2:-

| 2.00 0.00 2.67 |      | 10.00 |
| 0.00 1.50-0.50 |      |  1.50 |
| 0.00 0.00-0.67 |      | -2.00 |


Step 3:-

| 2.00 0.00 0.00 |      |  2.00 |
| 0.00 1.50 0.00 |      |  3.00 |
| 0.00 0.00-0.67 |      | -2.00 |


Step 4:-

| 1.00 0.00 0.00 |      |  1.00 |
| 0.00 1.00 0.00 |      |  2.00 |
| 0.00 0.00 1.00 |      |  3.00 |


The solution is:
x[1]= 1.00
x[2]= 2.00
x[3]= 3.00